
A METHOD TO EXTRAPOLATE THE p,v,T RELATIONSHIPS 

FOR COMPRESSED GASES AT ELEVATED TEMPERATURES 

V. V. A l t u n i n  a n d  A. V. G v o z d k o v  UDC 536.763 

A new extrapolation is proposed,  based on the behavior of the (z - 1) v isotherms in a p, T 
diagram. We have derived refined tables for the compress ib i l i ty  factor  of argon and 
krypton by this method for  p res su res  up to 200-700 bar  at t empera tures  as high as 650- 
800~ 

As we know, for the overwhelming majori ty of industrially important  gases the p, v, T relationship 
has been studied experimental ly only to tempera tures  of the order  of 150-300~176 Exact measurements  at 
higher t empera tures  are  r a r e  and usually encompass a range of low densities.  This situation necess i ta tes  
resor t ing  to general ized tables for diagrams for the compress ib i l i ty  factor  to determine the thermal  prop-  
er t ies  of compressed  gases at high tempera tures  [1-3], and these tables and diagrams have been compiled 
with the use of the modified principle of appropriate s tates .  For many problems the accuracy  of such de-  
terminations is inadequate, which led to the appearance of other calculation methods [4, 5]. 

The calculation technique in [4] differs f rom that in [5], but in both cases  relat ive calculation methods 
with respect  to some other substance are  employed (a hypothetical substance in [4] or to one that actually 
exists in [5]), preferably  with a s imi lar  thermodynamic surface.  As the same time, for this base substance,  
according to [5], we must have at our disposal exact experimental  data for the entire range of t empera tures  
and densities,  which is by no means always possible.  

The extrapolation method proposed in this ar t ic le  is not relat ive and unlike [4, 5] does not involve the 
principle of appropriate  s tates .  This approach to the problem of extrapolating the p, v, T relationship for 
compressed  gases at elevated t empera tu res  is more  co r r ec t  fundamentally and made it possible to ra i se  
the calculational accuracy .  

By studying various c ross  sections of the thermodynamic surface of compressed  gases,  the authors 
found that the ( z -  1)v = const i so therms in the p, T d iagram are slightly distorted and form a grid of r eg -  
ular ly  displaced lines, which change the sign of their  curvature  on passing through the value (z - 1)v = 0. 
F rom the virial  equation of state 

z =  1 + E~(T) p + B z(T) p ~ + Bz(7")p 3 + . . .  (1) 

it follows that 
(z--  l)v----- Bt(T ) + B2(T) p +Bs(T) p 2 + . . . ,  (2) 

i.e., when p = 0 we must necessa r i ly  have (z - 1)v - B I ( T  ). The (z - 1) v = 0 i sotherm is an exact straight  
line and with extrapolation to p = 0yields aBoyle tempera ture  value T B at which Bt(TB) = 0. 

It is now clear  that the specified i sotherm (z - 1) v = a, constructed f rom experimental  data at low 
tempera tu res ,  can be extended to higher t empera tures ,  all the way to T a when p = 0, where a = BI(T ). The 
higher values of the complex (z - 1) v in this case cor respond to higher t empera tures  T a. It is therefore  
possible to move comparat ively  far  beyond the limits of the experimental ly investigated range of t empera -  
tures  and to calculate the p, v, T relationship of the compressed  gas being examined here  for the case of 
elevated tempera tures  and p r e s su re s  (Fig. 1). The accuracy  of the calculation, as demonstra ted by a ver i f i -  
cation with CO2, Ar, Kr, Xe, air ,  and other gases ,  is commensura te  in a specific region with the accuracy  
of contemporary  experimental  data at elevated t empera tu res .  
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Fig .  1. The (z - 1) v = c o n s t  i s o t h e r m s  fo r  a r g o n  in the  p, T d i a g r a m  for  (z - 1) v in c m 3 / g ,  p in g 
/ c m  3, and T in OK {the s o l i d  l i ne s  a r e  t aken  f r o m  the  e x p e r i m e n t a l  d a t a  [7, 8], and the  d a s h e d  l i ne s  
denote  the  e x t r a p o l a t i o n  s e g m e n t s )  (a); the  s e c o n d  v i r i a l  c o e f f i c i e n t  of a r g o n  as  a funct ion  of t e m -  
p e r a t u r e  fo r  B~ in c m 3 / g  and T in ~ (b): a) 1 - (z - I)  v = 0.7; 2 - 0.6; 3 - 0.5; 4 - 0.4; 5 -  0.3; 6 - 
0.2; 7 - 0 . I ;  8--O; 9 -  ( -0 . i ) ;  i 0 -  (-0.2);  11 - (-0.3);  b) I - f r o m  [7, 8]; 2 - [15]; 3 - [19]; 4 -  [18]; 
5 - [17]; 6 - [16] (1-6 are experimental data); the solid line denotes the 18:6 potential; the dashed 

line denotes a 16:6 potential. 

Fig .  2. A r g o n  i s o t h e r m s  in the  (z - 1 )v ,  p d i a g r a m  fo r  (z - 1 )v  in c m 3 / g  and p in g / c m 3 :  1) [7, 8]; 2) 
[15]; 3) [16]: 1-3) a r e  e x p e r i m e n t a l  da ta ;  the  s o l i d  l i n e s  denote  the  d a t a  f r o m  Tab le  1, and  the d a s h -  
dot  l i ne s  i n d i c a t e  the  d a t a  f r o m  Eq.  (4) of [14]; a) 400~ b) 500~ c) 600~ d) 700~ e) 800 ~ 

To a c h i e v e  the  p r o p o s e d  e x t r a p o l a t i o n  method  we m u s t  have  at  our  d i s p o s a l  e x p e r i m e n t a l  da t a  on the  
c o m p r e s s i b i l i t y  of the  gas  u n d e r  c o n s i d e r a t i o n  fo r  a c e r t a i n  r a n g e  of t e m p e r a t u r e s ,  a l l  the  way up to the  
h igh  d e n s i t i e s ,  and we m u s t  even  know the funct ion BI(T ) at  e l e v a t e d  t e m p e r a t u r e s .  

We have  c h o s e n  a r g o n  and k r y p t o n  as  the  s u b j e c t s  of ou r  i n v e s t i g a t i o n  in th i s  a r t i c l e .  

A r g o n .  O u r  poin t  of r e f e r e n c e  b e g i n s  with the  e x p e r i m e n t a l  da t a  [7, 8] which  e n c o m p a s s  the  t e m p e r a -  
t u r e  i n t e r v a l  t = - 1 4 0 - + 1 5 0 ~  to ~0ma x - 2 .1 -2 .5 .  The  e x p e r i m e n t a l  d a t a  of [15] f o r  t = 300-950~ to Pmax 
= 0 .45-0 .23  g / c m  3 and f r o m  [16] fo r  t - 0-600~ and p r e s s u r e s  up to 80 a rm a r e  kep t  as  c o n t r o l  da t a .  

To d e t e r m i n e  B 1 (T) wi th  t > 150~ we e m p l o y e d  a m o d e l  po t en t i a l  of the  f o r m  

w h e r e  

n - - 6  

The b a s i s  f o r  the  s e l e c t i o n  of the n:6 po t en t i a l  was  b a s e d  on the fac t  tha t  the  w ide ly  u s e d  L e n n a r d  
- J o n e s  12:6 po t en t i a l  is  not  s u i t a b l e  fo r  i n e r t  g a s e s  [10-12],  whi le  the  t w o - p a r a m e t e r  n:6 po t en t i a l  is  a c o n -  
ven i en t  a l t e r n a t i v e  to the  m o r e  c o m p l e x  p o t e n t i a l s  in d e s c r i b i n g  both v i r i a l  and t r a n s p o r t  p r o p e r t i e s  [12]. 
The  me thod  of f inding  the c h a r a c t e r i s t i c  p a r a m e t e r s  of the  n:6 po ten t i a l  is  the s a m e  as  in [12], wi th  the  only 
d i f f e r e n c e  tha t  T B is d e t e r m i n e d  by  the e x t r a p o l a t i o n  of the  (z - 1) v = 0 i s o t h e r m  to p = 0. 
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According to the experimental  data of [7, 8] for argon we have found T B - 407 ~ t and B 0 = -  (B 0 To 0.7 TB 
= 0.466 cm3/g, we have determined the charac te r i s t i c  pa ramete r s  for severa l  n:6 potentials (when n - 12- 
20), and with the aid of the tables [12, 13] we have calculated BI(T ). It turned out that the best  resul ts  a r e  
given by the 18:6 potential for which g/k  : 159.1~ and b 0 : 1.1148 em3/g (see Fig. lb). The extrapolation 
of the experimental  data f rom [7, 8] was therefore  accomplished with the values of B 1 calculated for this 
potential. 

The probable error in the data recommended in Table 1 is of the order of 0.1-0.2% (with respect to 
z). If we tolerate a greater error, the extrapolation zone can be substantially broadened. 

The compressibility isotherms which we derived are compared (Fig. 2) with the experimental data of 
[7, 15, 16] as well as with those calculated according to the virial equation 

z -~ 1 -b B' (T*) p* q- C' (T*) p*~ q- D' (T*) p*', (4) 

whose coefficients have been found in [14] f rom the experimental  data for N2, CH4, Ar, Xe, etc. For At ,  
Eq. (4) is recommended in [14] for t -< 443~ and p <- 0.7 g / c m  3. 

The data of Table 1 are  in good agreement  with the experimental  data of [16] and the divergence at 
t - 200-600~ does not exceed 0.07%. The divergence f rom [14] is g rea te r  than 0.2% only when p > 0.4 g 
/ c m  3 and t < 200~ and it is a resul t  of the deviation of Eq. (4) f rom the original experimental  data of [7] 
nea r  the upper limit of applicability for the equation. The Lecocq data [15] are  sys temat ica l ly  lower,  and 
the divergence increases  with increas ing density and tempera ture ,  varying f rom 0.2-0.4% at 300~ to 0.6- 
0.7% at 650-800~ which is substantially in excess of the possible calculation e r r o r .  The deviation of the 
data f rom [15] - great  in magnitude and sys temat ic  - f rom the analytically extrapolated isochors  [7, 8] has 
also been found by the authors of [20]. However, no significance has been imparted to this deviation and 
for  the compilation of the tables we prepared  two equations of state which are joined at t = 150-300~ one 
according to the data of [7, 8]; and the other according to the data of [15] (see [20], pp. 167-172). 

Krypton. Our reference  data are  the experimental  values f rom [9], which encompass the t empera -  
ture range f rom 0-150~ to OOma x - 2.6. F rom these data T B = 566.2~ and B 0 = 0.269 cm3/g, while the c o r -  
responding values of the charac te r i s t i c  pa ramete r ,  e.g., for the 18:6 potential, a re  e / k  = 221.3~ and b 0 
= 0.6435 cm3/g. Comparison of the values of BI(T ) calculated for n:6 (when n = 12-20) and the experimental  
values f rom [9, 17--19, 21-22] demonst ra ted  that it is also the 18:6 potential that yields the best  resul ts .  

Table 2 shows that portion of the data derived by extrapolation of the (z - 1) v i so therms,  plotted f rom 
the measurements  of [9], to the selected values of B 1 for t = 200-650~ Just  as in the case of argon, the 
extrapolation zone in this case can be broadened,  if we permit  an e r r o r  in excess of 0.2-0.3%. 

The agreement  between the data of Table 2 and the exper imenta lda ta  f rom [21] for t = 150-600~ atm 
is excellent and the divergence does not exceed 0.05-0.1%. The experimental  data derived by Beattie and 
his coauthors [22] at t = 150-300~ and p -< 0.8 g / c m  3 are  lower than our figures by 0.1-0.3%. Although 
this divergence may be acknowledged as normal ,  we note that when t = 0-150~ the data of [22] are  sy s t em-  
atically lower than those of [9], and in t e rms  of magnitude this divergence reaches  0.3-0.6% at densities 
of the o rder  of 1.0-1.2 g / c m  3. This divergence is explained by the fact that the gas specimen studied in 
[22] contains impurit ies of xenon and, moreover ,  of par t icu lar  importance in the experiments of [22] might 
have been the cor rec t ion  factor  associated with the presence  of mercu ry  vapor in the tes t  mater ia l ,  a factor  
which had not been taken into considerat ion by the authors of the cited reference .  According to [14], Eq. (4) 
for  krypton also deviates noticeably f rom both the experimental  data of [9] when t -< 150~ and our data for 
t = 150-300~ but as the t empera tu re  r i ses ,  the divergence diminishes.  Thus, f o r  example,  with p = 0.80 
g / c m  3 the divergence amounts,  respect ively ,  to 0.8, 0.5, and 0.2% for the i sotherms at 150 ~ 200 ~ and 300~ 

In conclusion, we note that the proposed method of graphical  procedure  provides for  a more reliable 
judgement as to the corre la t ion  between the various groups of measurements ,  including those at the bound- 
ary  of the subject domain of s ta tes .  Here it also turns out to be possible markedly to reduce the scope of 
the experimental  information with regard  to the thermal  proper t ies  of a compressed  gas in a region of 
elevated tempera tures  and p r e s s u r e s ,  where measurements  of this type are difficult. 

fThe value of T B differs f rom those values found in [11, 14] and [16] by 1 ~ and 5 ~ respect ively .  
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